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Abstract
Questions: Our study focused on spontaneous vegetation in urban greenspaces in a 
Mediterranean city with the aim of relating plant community properties with ecologi-
cal services along soil disturbance gradients. We asked which plant communities have 
the	greatest	plant	biodiversity	and	soil	carbon	storage	and	the	best-	performing	nutri-
ent cycles and water regulation.
Location: Madrid City (Central Spain).
Methods: We studied four types of plant communities following soil disturbance gra-
dients: vegetation on trampled soils, roadside vegetation, annual grasslands and per-
ennial forbs. Regarding vegetation, we studied plant composition and productivity, 
plant diversity, plant growth forms and functional groups. Regarding soils, we deter-
mined soil organic carbon (TOC), available nutrients, the activity of seven enzymes 
relating to the main macronutrient cycles, and physical properties such as bulk den-
sity	(BD)	and	soil	water-	holding	capacity	(WHC).	We	used	one-	way	ANOVA	to	deter-
mine the influence of the plant community type on both soil and vegetation variables. 
Canonical correspondence analysis was performed to interpret the relationships be-
tween plant species assemblages with environmental gradients.
Results: Perennial forbs showed greater biomass and developed on soils with the 
greatest	TOC	and	available	phosphorus.	Annual	grasslands	displayed	the	highest	plant	
diversity. Roadside vegetation developed on soils with higher phenoloxidase activity 
when	compared	to	vegetation	on	trampled	soils	and	annual	grasslands.	Vegetation	on	
trampled	soils	developed	on	soils	with	lower	WHC,	lower	beta-	glucosidase,	arylami-
dase and phosphatase activities and higher BD when compared to perennial forbs. 
Plant community distribution followed gradients most significantly associated with 
soil organic matter content, soil compaction and nutrient cycling performance.
Conclusions: We conclude that plant communities are good indicators of ecosystem 
function and services which are unevenly distributed throughout urban habitats. The 
management in Mediterranean unmaintained urban greenspaces should be aimed at 
avoiding soil compaction to promote biodiversity, carbon storage and water regulation.
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1  |  INTRODUC TION

More than 50% of the world's population currently lives in urban areas, 
defined as areas with a population of 10,000 residents or more, and 
this	is	projected	to	reach	almost	70%	by	2050	(United	Nations,	2019). 
Urban	ecosystems	include	cities	and	the	surrounding	socio-	ecological	
systems where most people reside (Maes, 2016). Specifically in 
Europe, urban ecosystems have experienced a 7.1% increase in extent 
between 2000 and 2018 (Petersen et al., 2022).

Urban greenspaces including parks, gardens, vacant lots and 
wastelands are habitats for numerous wild species and thus a major 
source of biodiversity within cities (Dana et al., 2002; Meffert, 2017; 
Twerd	&	Banaszak-	Cibicka,	2019; Zara et al., 2021), providing import-
ant social and ecological benefits (Kim, 2016). In addition to main-
taining biodiversity, greenspaces deliver other important ecosystem 
services such as carbon sequestration, nutrient cycles, water regula-
tion,	 pest	 control	 and	pollination.	However,	 our	 knowledge	of	 eco-
system biodiversity and its benefits in terms of ecosystem services 
in urban environments is extremely poor for Mediterranean cities 
(Capotorti et al., 2013), where the impact of climate change is ex-
pected to be high (IPCC, 2014), and where their capacity to adapt may 
be crucial (Faeth, 2011; Solecki & Marcotullio, 2013).

Biodiversity and ecosystem functioning are linked (Gonzalez 
et al., 2020), as has been shown for natural and urban systems 
(Schittko et al., 2022). Thus, ecosystem service provisioning and the 
capacity	to	promote	citizens'	health	and	well-	being	depend	on	urban	
biodiversity. Given the strong human influence in urban greenspaces, 
understanding	 the	natural	and	the	human-	controlled	processes	 that	
alter urban biodiversity is essential for its conservation and associated 
service provisioning (Dearborn & Kark, 2010). One central element of 
urban greenspaces, their diversity and functioning, is the soil (Schittko 
et al., 2022), which, however, has only started to be the focus of re-
search	studies	recently	(Delgado-	Baquerizo	et	al.,	2021). Thus, beside 
drivers of urban plant biodiversity, we also need to understand more 
about the drivers of urban soil properties and functioning.

Urban soils comprise a set of different soil types where human 
influence is the keystone of their genesis (Leguédois et al., 2016). 
They show anthropogenic diagnostic horizons in addition to other 
artefacts,	 and	most	 can	 be	 classified	 as	 Anthrosols	 or	 Technosols	
(FAO,	2015). It is worth noting that certain soil features such as soil 
organic carbon have been found in quantities comparable to those 
in	 soils	 in	 natural	 and	 agricultural	 areas	 (Vasenev	 et	 al.,	2013), al-
though the presence of severe disturbance and/or potential toxic 
elements clearly influences the biological activity in urban soils 
(Piotrowska-	Długosz	 &	 Charzyński,	 2015; Zamulina et al., 2021). 
These disturbances can cause a decoupling of biogeochemical cycles 
with important implications for the functionality of ecosystems, as 

has	been	observed	 for	N	deposition	 (Ochoa-	Hueso,	2016) and for 
the increase in atmospheric CO2	 (Ochoa-	Hueso	 et	 al.,	2019). The 
interaction between soils and plants is relevant since plant communi-
ties influence the functioning of the soil, through the biogeochemical 
cycles (Freschet et al., 2018).

Urban soils and plants are a primary contributor to essential 
ecosystem services such as biodiversity maintenance, air quality, 
flood mitigation, climate regulation and food production (Blanchart 
et al., 2018).	 However,	 the	 functionality	 and	 ecosystem	 services	
of the soil– spontaneous vegetation tandem is largely unknown in 
Mediterranean cities where soil disturbance likely plays an important 
role. Our working hypothesis is that the composition and functionality 
of Mediterranean urban spontaneous habitats are closely related to 
soil disturbance, and in turn to the ecosystem services they provide. 
To test our hypothesis, we selected four urban habitats following soil 
disturbance gradients. The specific objectives of our study were to 
compare common urban plant communities, taken here as descriptors 
of urban habitats, along environmental gradients of soil compaction 
and nutrient availability to identify which habitats provide the best 
ecosystem functions in terms of greater plant biodiversity and pro-
ductivity, soil carbon storage and water regulation, as well as better 
soil performance of nutrient cycles. The identification of the soil and 
vegetation dynamics should guide the management of unmaintained 
urban green areas. To the best of our knowledge, our work is the first 
study of the biodiversity and functionality of various plant communi-
ties in green urban areas in a Mediterranean city.

2  |  METHODOLOGY

2.1  |  Sampling design

Our	 project	 was	 conducted	 in	 the	 Ciudad	 Universitaria —	 Moncloa	
Campus (http://www.campu	smonc	loa.es/en/campu	s-	moncl	oa/welco	
me.php) within the urban area of Madrid City (Central Spain). The cli-
mate in the area is Mediterranean. From 1988 to 2018, the local cli-
mate	has	had	a	mean	precipitation	of	about	400 mm,	and	the	annual	
mean temperature was about 13°C. Ciudad Universitaria is formed 
by a set of buildings with maintained and irrigated greenspaces, gar-
dens, avenues, and somewhat managed or abandoned areas where 
spontaneous plant communities are widely developed. These latter, 
which are the focus of our study, consist of wooded areas which are 
mostly derived from pine plantations, although spontaneous ruderal 
vegetation is the main vegetation matrix in the cover. They undergo 
a moderate management consisting of periodic mowing of the wild 
herbaceous vegetation and subsequent plowing to avoid fire risk in 
the summer, but no irrigation is applied.

K E Y W O R D S
carbon storage, ecosystem services, maintaining biodiversity, Mediterranean city, nutrient 
cycling, primary production, soil compaction/disturbance gradient, soil functionality, 
spontaneous urban vegetation, water regulation
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2.2  |  Vegetation survey

Using a stratified sampling procedure (Kent, 2012),	three	squares	(1 m2) 
were randomly established within the area occupied by four selected 
plant communities as descriptor of habitats along soil disturbance gra-
dients, which have been recognized as the most widespread urban 
plant communities in the study area (Figure 1, Molina, 2022). They 
are the following: (1) open annual dwarf herb vegetation on trampled 
soils;	 (2)	medium-	sized	annual	 forbs	 rich	 in	Brassicaceae	on	 roadside	
slopes;	(3)	annual	grasslands	rich	in	Poaceae	and	Asteraceae	dominated	
by	low-	growing	plants	in	open	fields;	(4)	forb	vegetation	characterized	
by	medium-	sized	 perennial	 and	 annual	 plants	 (Table 1). These plant 
communities are hereinafter referred to as follows: (1) trampled soils; 

(2)	roadsides;	(3)	annual	grasslands;	(4)	perennial	forbs.	We	performed	
three	 replicates	 for	 each	 habitat,	 thus	 a	 total	 of	 12	 sites —	 hereaf-
ter	 plots —	 were	 studied.	 Soil	 sampling	was	performed	 in	April	 2021,	
simultaneously with vegetation sampling when all the plant com-
munities were developed. The plant species were identified in each 
plot and their cover in percentage was visually estimated (Table 1). 
Nomenclature	of	plants	follows	Castroviejo	(1986– 2021). The number 
of	 individuals	 in	 each	plot	was	 counted.	Above-	ground	biomass	was	
collected in each plot. Fresh plant biomass was dried in an oven (85°C) 
until its mass was stable before determining the biomass for each plant 
species.	All	the	above-	mentioned	measurements	allowed	us	to	deter-
mine vegetation attributes such as floristic composition, abundance and 
dominance, species density and alpha diversity (Simpson and Shannon 

F I G U R E  1 (a)	Plant	communities	in	
the study; (b) experimental design; and 
(c) association between the measured 
parameters and their related ecosystem 
services.
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indexes). Each plant species was assigned to its corresponding growth 
form and its cover was determined. We identified the following four 
life-	form	categories	according	to	Raunkier	(1934): therophytes, hemic-
ryptophytes, geophytes and chamaephytes. Based on plant physi-
ological characteristics potentially linkable with biogeochemical cycles, 
we recognized the following six plant functional groups, and studied 
their	abundance:	sulfur	accumulators,	N-	fixers,	N-	compounds-	bearing	
plants, mucilage accumulators, terpenoid accumulators and silica ac-
cumulators. Similar plant functional groups have been successfully 
used to study Mediterranean grassland dynamics on abandoned lands 
(Quintana et al., 2021; Molina et al., 2023).

2.3  |  Soil sampling and analysis

Soil	samplings	were	taken	using	cores	of	5 cm	in	diameter	from	the	top	
0–	5 cm	 in	 each	 square	 to	 determine	 the	 soil	 water-	holding	 capacity	
(WHC)	and	bulk	density	 (BD).	About	1000 g	of	soil	samples	were	col-
lected and stored in plastic bags to be taken to the laboratory to analyze 
the soil physical– chemical and biological variables. Fresh samples were 
sieved	with	a	2 mm	sifter	and	subdivided	into	two	subsamples,	one	of	

TA B L E  1 Synoptic	table	showing	the	average	cover	(%)	and	the	
frequency	(superscript)	of	species	in	each	of	the	four-	study	plant	
communities (columns).

1 2 3 4

Plantago coronopus, T 223

Diplotaxis virgata, T 11 202 12

Anthemis arvensis, T 21 163 11

Malva sylvestris,	H 483

Crassula tillaea, T 12

Avena sterilis, T 63

Bromus scoparius, T 171

Erodium ciconium, T 201

Piptatherum miliaceum,	H 141

Plantago lagopus, T 32 141 42 21

Thrincia hispida, T 23 11 202

Erodium cicutarium, T 21 11 21

Polycarpon tetraphyllum, T 11 11 11

Trisetaria panicea, T 11 21 11

Bromus madritensis, T 11 11 11

Hordeum murinum subsp. leporinum, T 42 91 173

Bromus rubens, T 22 142 11

Astragalus hamosus, T 82 12 11

Anacyclus clavatus, T 42 11 12

Calendula arvensis, T 11 11 11

Trigonella monspeliaca, T 11 21

Filago pyramidata, T 11 12

Eryngium campestre,	H 11 11

Trifolium tomentosum, T 11 11

Centaurea melitensis, T 112 11

Medicago minima, T 11 91

Avena barbata, T 11 12

Echium plantagineum, T 11 11

Hymenocarpos cornicina, T 11 11

Medicago orbicularis, T 41 11

Sonchus tenerrimus, C 32 23

Geranium molle, T 32 71

Bromus hordeaceus, T 11 11

Taraxacum obovatum,	H 11 11

Rostraria cristata, T 22

Spergularia purpurea, T 21

Capsella bursa- pastoris 11

Sedum caespitosum, T 11

Spergularia rubra, T 11

Herniaria cinerea, T 11

Poa annua, T 11

Medicago rigidula, T 42

Chondrilla juncea,	H 21

Sedum album, C 21

Hedypnois cretica, T 21

Anthriscus caucalis, T 11

Asphodelus aestivus, T 11

1 2 3 4

Carduus pycnocephalus, T 11

Euphorbia peplus, T 11

Reseda phyteuma, T 11

Misopates orontium, T 11

Trifolium cherleri, T 11

Vulpia myuros, T 33

Hypochaeris glabra, T 22

Trifolium scabrum, T 21

Alyssum granatense, T 11

Astragalus pelecinus, T 11

Petrorhagia nanteuilii, T 11

Trifolium campestre, T 11

Valerianella locusta, T 11

Vulpia membranacea, T 11

Convolvulus arvensis, G 22

Erodium moschatum, T 22

Stellaria media, T 11

Allium ampeloprasum, G 11

Arenaria leptoclados, T 11

Cichorium intybus,	H 11

Crepis capillaris, T 11

Euphorbia helioscopia, T 11

Cardaria draba,	H 11

Medicago sativa,	H 11

Notes: 1, Open annual dwarf herb vegetation on trampled soils; 
2,	annual	forbs	on	roadsides;	3,	annual	grasslands;	4,	perennial	
forbs.	Abbreviations	after	the	plant-	species	name	are	as	follows:	
C,	chamaephytes;	G, geophytes;	H,	hemicryptophytes;	T,	therophytes.

TA B L E  1 (Continued)
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which	was	air-	dried	for	physical–	chemical	analyses,	while	the	other	was	
refrigerated	at	4°C	 for	 later	use,	within	one	month,	 to	determine	en-
zyme activity and nutrient available content. The following soil chemi-
cal parameters were determined: total organic carbon (TOC) using the 
Walkley and Black (1934) wet oxidation procedure, available phosphorus 
(AP)	using	the	Olsen	and	Sommers	(1982) method, and available ammo-
nium	(NH4-	N)	obtained	by	extraction	in	2 M	KCl	and	later	measured	by	
UV–	visible	spectrophotometry	following	the	Keeney	and	Nelson	(1982) 
method. The biological characterization of soils was done by determin-
ing the enzyme activities related to the biogeochemical cycles of carbon, 
nitrogen, sulfur and phosphorus. They were the following: β-	glucosidase	
(Beta-	GLU),	 and	 phenoloxidase	 (PHE)	 for	 the	 C	 cycle;	 arylamidase	
(ARYL-	N)	and	urease	(URE)	for	the	N	cycle;	phosphatase	(PHO)	for	the	
P	cycle;	and	arylsulfatase	(ARYL-	S)	for	the	S	cycle.	Dehydrogenase	(DH)	
activity	was	used	as	an	index	of	microbial	activity.	All	the	activities	were	
obtained following ISO 20130 methods (ISO, 2018),	except	PHE	activity	
which was obtained following the DeForest (2009) method, and dehy-
drogenase	(DH)	which	followed	the	Schaefer	(1963)	method.	All	activ-
ity	measurements	were	determined	in	a	UV–	visible	spectrophotometer	
with	 a	TECAN	NANOQUANT	 INFI-	NITE	M200	PRO	multi-	well	 plate	
reader. The samples for the enzyme activity were previously incubated 
in	a	MEMMERT	IN	55	incubator.	The	physical	properties	for	WHC	and	
BD were determined using the Soil Survey Staff (2014) procedure.

2.4  |  Statistical methods

A	one-	way	ANOVA	was	carried	out	followed	by	a	least	significant	differ-
ence (LSD) test to study the influence of the plant community type on soil 
variables and vegetation features. The soil variables were normalized by 
converting	them	to	logarithms.	All	analyses	were	done	using	the	SPSS-	
Statistical Package for the Social Sciences v.27 (SPSS, Inc.) software.

We used correspondence analysis to determine the relationships 
between	plant	community	composition	and	their	environment.	As	the	
detrended correspondence analysis showed that the plant species cover 
exhibited a unimodal response to the soil gradients, we performed ca-
nonical	correspondence	analysis	 (CCA)	 for	 the	compositional	analysis.	
We	 used	 a	 square-	root	 transformation	 of	 the	 species	 cover	 and	 the	
downweighting of rare species. The variables with the most impact on 
communities were selected by means of permutation tests following a 
forward	stepwise	procedure.	These	analyses	were	done	in	CANOCO	5.0	
(Microcomputer	Power,	Ithaca,	NY,	USA).

3  |  RESULTS

3.1  |  Primary production and maintaining 
biodiversity

The	 one-	way	 ANOVA	 calculated	 for	 biomass	 showed	 that	 perennial	
forbs had a significantly higher productivity than the rest of the com-
munities in the study, whereas the biomass of vegetation on trampled 
soils was significantly lower than that of roadsides and perennial forbs 

(Figure 2a).	Annual	grasslands	showed	a	significantly	higher	density	than	
the rest of the communities (Figure 2b). Regarding functional traits, 
plants with mucilage (Malvaceae) had a significantly higher cover in 
perennial forbs (Figure 2c); and silica accumulator plants (Poaceae) had 
the highest cover in annual grasslands, with significant differences com-
pared to their cover in vegetation on trampled soils (Figure 2d).

3.2  |  Carbon storage, nutrient cycling and 
water regulation

Soils under perennial forbs had a significantly higher content of or-
ganic carbon (TOC) than in other plant communities (Figure 3a). The 
soil under perennial forbs had a significantly higher β-	glucosidase	
(Beta-	GLU)	activity	compared	to	trampled	soils,	with	the	other	com-
munities presenting intermediate values (Figure 3b). Phenoloxidase 
(PHE)	activity,	responsible	for	metabolizing	recalcitrant	organic	mat-
ter, was significantly higher in roadsides than in trampled soils and 
annual grasslands, with perennial forbs showing intermediate values 
(Figure 3c).

Arylamidase	(ARYL-	N),	a	key	enzyme	in	the	N	cycle,	differentiated	
significantly perennial forbs with higher activity and trampled soils, 
with lower activity (Figure 3d). This pattern was very similar to that 
found	for	Beta-	GLU	activity.	AP	was	significantly	higher	under	peren-
nial forbs than in other plant communities (Figure 3e). Phosphatase 
(PHO)	 showed	 a	 significantly	 higher	 activity	 under	 perennial	 forbs	
than in trampled soils and annual grasslands (Figure 3f).

Soil	 WHC	 had	 significant	 lower	 values	 in	 trampled	 soils	 when	
compared with roadsides and perennial forbs (Figure 3g). BD showed 
a significantly higher value on trampled soils than on roadsides and 
perennial forbs (Figure 3h). In addition, soils under annual grassland 
had significantly higher BD than under perennial forbs.

3.3  |  Plant species assemblages and soil gradients

The	representation	of	the	first	two	axes	of	the	CCA	using	floristic	and	
soil variables showed two main gradients, in soil organic matter con-
tent and soil compaction (Figure 4). Perennial forbs, characterized by 
an abundance of Malva sylvestris, were related to soils with a higher 
amount	 of	 organic	matter.	Vegetation	on	 trampled	 soils,	 character-
ized by higher abundances of Plantago coronopus, was related to more 
compacted	soils.	Annual	grasslands,	characterized	by	the	abundance	
of Anthemis arvensis, Trincia hispida and Bromus species, were also re-
lated to compacted soils but to a lesser extent. Roadside vegetation 
was mainly characterized by Diplotaxis virgata, and mostly linked to 
soils	with	higher	activity	in	ARYL-	S.

4  |  DISCUSSION

The distribution of biodiversity, species assemblages and amount of 
C storage in cities is highly dependent on the local spatial variation in 
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factors such as soil parent material, land use and land cover (Lorenz 
& Lal, 2009;	Norton	et	al.,	2016). Our results highlighted that plant 
community distribution follows gradients of soil anthropogenic pres-
sure, which can be most significantly associated with organic matter 
content, soil compaction and nutrient cycling performance.

Vegetation	on	trampled	soils	has	been	included	in	the	Polyono- 
Poetea phytosociological class, characterized by therophytic com-
munities	 of	 subcosmopolitan	 dwarf	 herbs	 (Rivas-	Martínez,	1975). 
Recreational human trampling causes soil compaction, which 
decreases total porosity and vegetation cover and height (Sun & 
Liddle, 1993). In a comparison with the rest of the study habitats, 
our results showed that trampled soils provided reduced ecosystem 
services in water regulation, nutrient cycling, and carbon storage. It 
has been observed that vegetation dominated by hemicryptophytes 
and geophytes recovers from trampling more successfully than veg-
etation dominated by other life forms (Pescott & Stewart, 2014). 
However,	in	our	study,	vegetation	on	trampled	soils	was	dominated	
by therophytes, and the closeness of the floristic and ecological re-
lationships we found between annual grasslands and trampled soils 
(CCA)	likely	points	to	the	possibility	of	one	community	transforming	
into another by promoting or preventing soil compaction.

Mediterranean ruderal annual grasslands are the most widespread 
vegetation in abandoned and moderately managed lands in the study 
area (Molina, 2022). This type of vegetation has been included in the 
Hordeion murini phytosociological alliance (Mucina et al., 2016) and 

has	been	considered	as	subnitrophilous	(Rivas-	Martínez	&	Izco,	1977; 
Rivas-	Martínez,	 1978). Our results support this adscription of nu-
trient status, since annual grasslands grow on soils with moderate 
AP.	 Annual	 grasslands	 are	 rich	 in	 silica	 accumulator	 plants,	 which	
effectively alleviated both biotic (pathogens and pests) and abiotic 
(e.g., drought, heavy metals, nutrient imbalance) stresses (Pavlovic 
et al., 2021). This functional group has a major influence on soil pro-
cesses	by	increasing	the	macro-		(N,	P,	K)	and	micronutrient	(Fe,	Mn,	
Cu, Zn) absorption in plants (Luyckx et al., 2017). Our results showed 
that Mediterranean subnitrophilous annual grasslands play a signifi-
cant role in maintaining diversity. This type of vegetation could there-
fore be considered as valuable from the standpoint of biodiversity 
conservation in Mediterranean urban ecosystems.

Mediterranean roadside vegetation consists of plants with short 
life	cycles	developing	in	early	spring	(Rivas-	Martínez	et	al.,	2002).	As	
in the case of the preceding vegetation it is ascribed to the Hordeion 
alliance	(Rivas-	Martínez	et	al.,	2001). Roadsides are largely charac-
terized by sulfur accumulator plants (crucifers) related to soils with 
higher	aryl-	S	activity,	an	enzyme	that	promotes	the	breakdown	of	
sulfate esters. The relationship between crucifer abundance and soil 
sulfur availability in recently abandoned fields has been mentioned 
(Valverde-	Asenjo	et	al.,	2020). We found that roadside vegetation 
was subjected to a high abiotic stress since they developed on soils 
with a clear imbalance between a low TOC content and high activity 
of soil microbiota. Roadsides were also related to barely compacted 

F I G U R E  2 (a)	Biomass;	(b)	density;	(c)	cover	of	mucilage	accumulators;	and	(d)	cover	of	silica	accumulators	in	four	habitats	(trampled	
soils,	roadsides,	annual	grasslands,	perennial	forbs).	Letters	indicate	significant	differences	between	habitats	(one-	way	ANOVA	with	least	
significant difference [LSD] test, p < 0.05).	Error	bars	represent	standard	error	(n = 3).
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F I G U R E  3 (a)	Soil	total	organic	carbon	(TOC);	(b)	beta-	glucosidase	activity	(Beta-	GLU);	(c)	phenoloxidase	activity	(PHE);	(d)	arylamidase	
activity	(Aryl-	N);	(e)	available	phosphorus	(AP);	(f)	phosphatase	activity	(PHO);	(g)	soil	water-	holding	capacity	(WHC);	and	(h)	bulk	density	
(BD) in four habitats (trampled soils, roadsides, annual grasslands, perennial forbs). Latin letters indicate significant differences between 
habitats	(one-	way	ANOVA	with	least	significant	difference	[LSD]	test,	p < 0.05).	Error	bars	represent	standard	error	(n = 3).
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soils, which suggests that the main ecosystem function provided by 
this habitat may be therefore be related to water regulation.

Perennial forbs in our study corresponded to ruderal vegetation 
abundant in Malva sylvestris, a mucilage accumulator plant. Mucilage 
accumulation in plants increases their capacity to retain water in case 
of soil water deficits and aids the storage of food and water (Tosif 
et al., 2021). In soil, this functional group enhances soil microaggregate 
stabilization, water storage ability and the absorption of ions through 
root cells. Perennial forbs showed the highest primary production and 
developed	on	soils	with	a	significantly	higher	TOC	and	AP,	and	a	lower	
BD and a higher rate of most enzyme activities involved in macronutri-
ent cycling. This vegetation is a priori valuable for its high functionality 
in terms of soil carbon storage, primary productivity, nutrient cycling 

and	water	 regulation.	However,	 a	nitrophilous	vegetation	dominated	
by perennial and herbaceous species is also related to highly disturbed 
habitats (Dana et al., 2002).	According	to	our	results,	the	high	soil	nutri-
ent availability and enzyme activity under perennial forbs demonstrates 
that	 they	 are	 nutrient-	demanding.	 The	 fast	 cycles of	 macronutrient	
functioning—	 likely	due	to	the	high	demand	for	nutrients	coupled	with	a	
low	biodiversity —	 indicate	an	imbalance	in	the	ecosystem	services	they	
provide, so this habitat should not be prioritized in the management of 
urban	greenspaces.	A	study	 is	currently	under	way	 to	determine	 the	
dynamics of this vegetation when disturbance is avoided (https://tribu 
na.ucm.es/news/parce	las-	perma	nente	s-	una-	herra	mient	a-	idone	a-	para-	
la-	gesti	on-	de-	la-	biodi	versidad).

5  |  CONCLUSIONS

From the results of our study, we conclude that in Mediterranean 
cities, plant communities are good descriptors of urban habitats and 
indicators of ecosystem function and services. The degree of soil distur-
bance determines the plant communities and the ecosystem services 
they provide. The management of urban greenspaces maintaining the 
spontaneous vegetation should be based on avoiding soil compaction 
to obtain better ecological services such as conserving biodiversity, soil 
carbon storage, nutrient cycling and water regulation. In this regard, 
perennial forbs are related to higher soil carbon content but also to a 
fast and high demand for nutrients. In a vegetation type as dynamic 
as ruderal Mediterranean vegetation, the way in which these patterns 
change or are maintained over time remains to be studied.
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F I G U R E  4 Canonical	correspondence	analysis	ordination	
triplot for samples, response variables (species) and explanatory 
variables	(soil	features	of	the	0–	5 cm	horizon).	The	first	two	axes	
explain	13.86%	and	24.83%	of	cumulative	variance.	Samples	
are indicated by colored dots as follows: green dots, vegetation 
on trampled soils; orange dots, roadside vegetation; yellow 
dots, annual grasses; purple dots, perennial forbs. Explanatory 
variables	are	abbreviated	as	follows:	ARYL-	S,	arylsulfatase;	BD,	
bulk density; TOC, total organic carbon. The soil variable in red is 
significant in the Monte Carlo test (p < 0.05).	The	diagram	shows	
a maximum of 20 species with the largest weight response. Plant 
species	are	abbreviated	as	follows:	Ana	cla = Anacyclus clavatus; 
Ant	arv = Anthemis arvensis;	Ast	ham = Astragalus hamosus;	Ave	
ste = Avena sterilis;	Bro	rub = Bromus rubens;	Bro	sco = Bromus 
scoparius;	Cen	mel = Centaurea melitensis;	Dip	vir = Diplotaxis 
virgata;	Ero	cico = Erodium ciconium;	Ero	cicu = Erodium cicutarium; 
Hyp	gla = Hypochaeris glabra;	Ger	mol = Geranium molle;	Hor	
lep = Hordeum murinum subsp. leporinum;	Mal	syl = Malva sylvestris; 
Med	min = Medicago minima;	Pip	mil = Piptatherum miliaceum; 
Pla	cor = Plantago coronopus;	Pla	lag = Plantago lagopus; Son 
ten = Sonchus tenerrimus;	Thr	his = Thrincia hispida. Eigenvalues: axis 
1 = 0.104,	axis	2 = 0.046.
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